Estás aquí: start » inv » composit » validation

ComposIT: A Semantic Web Service Composition Engine

Esta é unha revisión antiga do documento!


ComposIT: A Semantic Web Service Composition Engine

Authors: Pablo Rodriguez-Mier, Carlos Pedrinaci, Manuel Lama, and Manuel Mucientes

Abstract—One major advantage of web services is the ability to be combined to create composite services on-demand through automatic composition techniques. However, although the inclusion of semantics allows a greater precision in the description of their functionality, and therefore greater composition capabilities, the current application of Semantic Web Services (SWS) composition techniques still remains limited due in part to both lack of publicly available, robust, and scalable software composition engines and the heterogeneity that exists among the different SWS description languages. In this paper we introduce ComposIT, a fast and scalable composition engine which is able to automatically compose multiple heterogeneous services from the point of view of the semantic input-output matching thanks to the use of a minimal service model. We also present a complete analysis of two publicly available state-of-the-art composition planners and a comparison between ComposIT and these planners. To carry out this task, we developed a benchmarking tool that automates the evaluation process of the different composition algorithms using an adapted version of the datasets from the Web Service Challenge 2008. Results obtained demonstrate that ComposIT outperforms classical planners both in terms of scalability and performance.

Purpose of this Web

In previous works1) 2), ComposIT was analyzed and compared with the winners of the Web Service Challenge 2008 (WSC'08). These experiments demonstrated that ComposIT can obtain optimal solutions, outperforming the results obtained by the winners with respect to the number of services and the composition length. However, the aim of the experiments presented here is to compare the performance of ComposIT with two open source state-of-the-art composition engines, OWLS-Xplan and PORSCE-II, which use classical AI planning algorithms.

The experimentation is focused on the generation of semantically valid composite services taking into account the semantic information regarding the inputs and outputs of services in absence of preconditions and effects. To carry out this comparison, we developed a benchmarking tool that automates the evaluation process of the different composition algorithms using an adapted version of the WSC'08 datasets. The purpose of this page is to extend the details of the evaluation explained in the original paper.

Datasets

To validate the three composition engines, we used three collections of datasets: Exact-Matching, Semantic-Matching and WSC'08 datasets. The first two collections are based on the original WSC'08 datasets but containing only the services from the solution itself for validation purposes. Characteristics of each dataset are shown below.

Semantic Matching datasets

Download the XML Semantic-Matching datasets semantic-matching.tar.gz

Dataset #Serv #Serv. Sol. #Length Avg. In./Out. #Init. con. #Goal con.
Semantic-Matching 01 2 2 2 1.0 / 1.0 1 1
Semantic-Matching 02 3 3 2 3.0 / 1.0 3 1
Semantic-Matching 03 10 10 3 4.03 / 3.08 3 2
Semantic-Matching 04 5 5 3 4.25 / 4.68 4 1
Semantic-Matching 05 40 40 23 5.07 / 2.44 3 1
Semantic-Matching 06 10 10 5 5.47 / 3.47 6 4
Semantic-Matching 07 20 20 8 3.03 / 5.11 2 3
Semantic-Matching 08 35 35 14 3.10 / 3.37 9 4
Semantic-Matching 09 20 20 12 3.07 / 4.40 8 1
Semantic-Matching 10 30 30 20 3.25 / 5.42 5 4

Exact Matching datasets

Download the XML Exact-Matching datasets exact-matching.tar.gz

Dataset #Serv #Serv. Sol. #Length Avg. In./Out. #Init. con. #Goal con.
Exact-Matching 01 2 2 2 1.0 / 1.0 1 2
Exact-Matching 02 3 3 2 3.0 / 20.5 3 40
Exact-Matching 03 10 10 3 4.03 / 16.53 3 100
Exact-Matching 04 5 5 3 4.25 / 21.05 4 77
Exact-Matching 05 40 40 23 5.07 / 14.20 3 407
Exact-Matching 06 10 10 5 5.47 / 24.09 6 157
Exact-Matching 07 20 20 8 3.03 / 26.39 2 261
Exact-Matching 08 35 35 14 3.10 / 23.21 9 507
Exact-Matching 09 20 20 12 3.07 / 24.71 8 219
Exact-Matching 10 30 30 20 3.25 / 33.81 5 473

Web Service Challenge 2008 datasets

Download the XML WSC'08 datasets wsc08.tar.gz

Dataset #Serv #Serv. Sol. #Length Avg. In./Out. #Init. con. #Goal con.
WSC'08 01 158 10 3 3.53 / 5.25 3 1
WSC'08 02 558 5 3 3.79 / 3.92 4 1
WSC'08 03 604 40 23 4.07 / 6.46 3 2
WSC'08 04 1041 10 5 4.23 / 5.47 6 1
WSC'08 05 1090 20 8 3.36 / 4.26 2 1
WSC'08 06 2198 35 14 6.00 / 4.31 9 4
WSC'08 07 4113 20 12 7.37 / 7.21 8 3
WSC'08 08 8119 30 20 5.44 / 6.54 5 4

Exact-Matching datasets were calculated by extending the outputs of each web service, including all superclasses of each output as an output of the service itself (semantic expansion). Thus, the average number of outputs is bigger than in the other datasets. The semantic expansion transforms a semantic matching problem into a exact matching problem, when exact and plug-in match is used to perform the semantic matchmaking. This allows us to test composition algorithms (that do not use semantic reasoners) with the WSC'08 datasets. For example, suppose that a service S1 provides the instance “my_car” which is an instance of the concept “sedan”, whereas another service S2 requires an input “car”. Given that “my_car” is a sedan “car” (plug-in match), S2 can use it as an input. This behavior can be simulated by adding superclasses of “my_car” to the service. Thus, service S1 will return outputs “my_car”, “car”, “sedan” and “vehicle” after the semantic expansion.

The next figure represents an example of the semantic expansion. In the first case, a semantic reasoner is required to match output “my_car” to “car”. In the second case, the service returns the output “my_car” as well as all superclasses (sedan, car, vehicle). In this case, the output “car” from S1 matches exactly the input “car” from S2.

Evaluation

The performance of each composition algorithm has been measured using a test platform developed for this purpose. We carried out three different experiments, one for each collection of datasets shown in the previous tables, to determine the quality of the solutions and the composition time. The experiments consisted of five independent executions of each algorithm over each dataset. The number of services and the length of the composition, as well as the minimum, average and standard deviation of the time taken to solve the composition problem are shown in the tables below. All the experiments were performed using a Windows XP 32-bit with VirtualBox 4.1.22 (2 GB of RAM, 1 core), on a PC-station equipped with an Intel Core 2 Quad Q9550 at 2.83GHz running Ubuntu 10.04 64-bit.

1. Exact-Matching evaluation results

Dataset Algorithm Solution Execution (ms)
#Serv #Length Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex.5 Min Avg SD
Exact-Matching 01 ComposIT 2 2 238.20 158.04 153.63 153.61 145.07 145.07 169.71 38.57
Xplan 2 2 306.65 348.32 328.53 359.50 305.37 305.37 329.67 24.29
PORSCE-II 2 2 3478.53 3717.59 3657.99 3524.25 3553.97 3478.53 3586.47 98.60
Exact-Matching 02 ComposIT 3 2 274.59 209.04 211.42 196.24 206.73 196.24 219.60 31.28
Xplan 3 3 416.11 490,68 391.30 476.10 422.66 391.30 439.37 42.17
PORSCE-II 9 9 5206.54 5283.59 5240.02 5482.74 5649.92 5206.54 5372.56 188.49
Exact-Matching 03 ComposIT 10 3 422.66 379.86 369.33 330.27 365.57 330.27 373.54 33.19
Xplan 10 10 815.73 642.90 616.80 595.58 622.55 595.58 658.71 89.38
PORSCE-II 22 22 16081.13 15721.06 15105.77 16452.69 14779.84 14779.84 15628.10 686.69
Exact-Matching 04 ComposIT 5 3 321.52 316.63 316.42 354.47 381.93 316.42 338.19 29.13
Xplan - - - - - - - - - -
PORSCE-II 14 14 10889.68 10777.27 10595.46 10898.34 10767.12 10595.46 10785.57 122.58
Exact-Matching 05 ComposIT 40 23 7111.35 6676.08 6669.89 6775.57 6710.47 6669.89 6788.67 185.20
Xplan - - - - - - - - - -
PORSCE-II - - - - - - - - - -
Exact-Matching 06 ComposIT 10 5 463.92 468.82 603.30 484.27 505.79 463.92 505.22 57.20
Xplan - - - - - - - - - -
PORSCE-II 27 27 24106.72 24340.28 23880.96 24732.57 24025.89 23880.96 24217.28 332.65
Exact-Matching 07 ComposIT 20 8 952.07 1103.62 951.09 1015.01 895.89 895.89 983.54 79.27
Xplan - - - - - - - - - -
PORSCE-II 52 52 38036.12 37755.37 35577.92 36377.60 36306.59 35577.92 36810.72 1043.49
Exact-Matching 08 ComposIT 35 14 6071.00 6299.35 5859.83 6324.65 6174.44 5859.83 6145.85 189.58
Xplan - - - - - - - - - -
PORSCE-II - - - - - - - - - -
Exact-Matching 09 ComposIT 20 12 1079.93 1065.36 1096.51 1090.66 1100.17 1065.36 1086.53 14.09
Xplan - - - - - - - - - -
PORSCE-II - - - - - - - - - -
Exact-Matching 10 ComposIT 30 20 5236.27 5596.29 5352.37 5663.87 5263.09 5236.27 5422.38 195.88
Xplan - - - - - - - - - -
PORSCE-II - - - - - - - - - -

2. Semantic-Matching evaluation results

Results of the semantic analysis done to detect the optimal values of the thresholds for PORSCE-II.

Plug-in threshold Time (for Semantic-Matching 01) % Datasets solved Semantic-Matching datasets solved Performance
1 6721.69 10% 01 100.00%
2 9735.35 30% 01, 02, 03 69.04%
3 13257.96 40% 01, 02, 03, 04 50.70%
4 15139.06 50% 01, 02, 03, 04, 07 44.40%
5 20059.98 50% 01, 02, 03, 04, 07 33.51%
6 20616.51 60% 01, 02, 03, 04, 06, 07 32.60%
7 24607.99 60% 01, 02, 03, 04, 06, 07 27.32%
8 27791.03 60% 01, 02, 03, 04, 06, 07 24.19%
9 31261.37 60% 01, 02, 03, 04, 06, 07 21.50%
10 33648.79 60% 01, 02, 03, 04, 06, 07 19.98%
11 34074.82 60% 01, 02, 03, 04, 06, 07 19.73%
12 40787.78 60% 01, 02, 03, 04, 06, 07 16.48%
13 40704.43 60% 01, 02, 03, 04, 06, 07 16.51%
14 44085.17 60% 01, 02, 03, 04, 06, 07 15.25%
15 47256.00 60% 01, 02, 03, 04, 06, 07 14.22%
16 50164.25 60% 01, 02, 03, 04, 06, 07 13.40%
17 51815.99 60% 01, 02, 03, 04, 06, 07 12.97%
18 56561.49 60% 01, 02, 03, 04, 06, 07 11.88%
19 58981.02 60% 01, 02, 03, 04, 06, 07 11.40%

Based on these results, we selected the following optimal threshold N for each datasets: N=1 for Semantic-Matching 01, N=2 for Semantic-Matching 02 and 03, N=3 for Semantic-Matching 04, N=4 for Semantic-Matching 07 and N=6 for Semantic-Matching 06.

Dataset Algorithm Solution Execution (ms)
#Serv #Length Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex.5 Min Avg SD
Semantic-Matching 01 ComposIT 2 2 92.46 214.92 108.11 297.97 387.13 92.46 220.12 125.32
PORSCE-II (1) 2 2 7487.74 6655.72 6537.85 6190.85 8326.61 6190.85 7039.75 862.66
Semantic-Matching 02 ComposIT 3 2 272.64 387.46 119.45 87.49 240.80 87.49 221.57 121.35
PORSCE-II (2) 3 3 14355.59 14784.66 14467.15 13685.42 14779.62 13685.42 14414.49 449.48
Semantic-Matching 03 ComposIT 10 3 104.14 261.09 229.25 307.21 317.30 104.14 243.80 85.79
PORSCE-II (2) 11 11 47524.98 49847.54 49750.68 45989.71 45359.04 45359.04 47694.39 2076.83
Semantic-Matching 04 ComposIT 5 3 287.12 213.46 97.21 112.70 101.86 97.21 162.47 84.48
PORSCE-II (3) 7 7 29187.01 29593.40 29466.08 28759.73 31130.29 28759.73 29627.30 898.98
Semantic-Matching 05 ComposIT 40 23 684.00 694.36 682.87 272.57 282.76 272.57 523.31 224.32
PORSCE-II (16) - - - - - - - - - -
Semantic-Matching 06 ComposIT 10 5 223.73 409.05 101.80 96.48 125.48 96.48 191.31 132.10
PORSCE-II (6) 14 14 134258.53 114729.94 112889.12 114402.36 118113.16 112889.12 118878.62 8806.96
Semantic-Matching 07 ComposIT 20 8 332.64 402.18 178.90 132.44 342.98 132.44 277.83 115.80
PORSCE-II (4) 35 35 154651.56 155128.96 153448.76 156402.12 153196.42 153196.42 154565.56 1305.71
Semantic-Matching 08 ComposIT 35 14 674.44 742.30 857.37 338.21 790.32 338.21 680.53 202.71
PORSCE-II (17) - - - - - - - - - -
Semantic-Matching 09 ComposIT 20 12 445.83 295.22 151.83 180.21 684.96 151.83 351.61 219.36
PORSCE-II (15) - - - - - - - - - -
Semantic-Matching 10 ComposIT 30 20 219.66 214.97 445.83 535.24 210.08 210.08 325.16 154.28
PORSCE-II (17) - - - - - - - - - -

3. WSC'08 evaluation results

Dataset Algorithm Solution Execution (ms)
#Serv #Length Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex.5 Min Avg SD
WSC'08 01 ComposIT 10 3 308.45 223.35 224.23 217.05 231.03 217.05 240.82 38.13
PORSCE-II (2) 11 11 700552.14 703166.16 706210.96 709269.96 688332.37 688332.37 701506.32 8056.46
WSC'08 02 ComposIT 5 3 286.18 247.79 236.50 231.01 308.12 231.01 261.92 33.63
PORSCE-II (3) 8 8 3633027.68 3635780.31 3494138.55 3518414.74 3501751.84 3494138.55 3556622.62 71551.69
WSC'08 03 ComposIT 40 23 1448.94 1417.31 1429.48 1413.16 1457.06 1413.16 1433.19 19.27
PORSCE-II (16) - - - - - - - - - -
WSC'08 04 ComposIT 10 5 427.54 434.77 434.53 451.68 440.62 427.54 437.83 9.02
PORSCE-II (6) 16 16 13594552.10 13746460.11 13260928.67 13153932.78 13152705.66 13152705.66 13381715.86 272606.85
WSC'08 05 ComposIT 20 8 1052.68 1018.33 995.83 1019.80 1011.26 995.83 1019.58 20.80
PORSCE-II (4) 45 45 9569454.60 9642162.17 9461697.18 9900376.49 9735598.82 9461697.18 9661857.85 166822.85
WSC'08 06 ComposIT 42 7 3611.03 3587.10 3525.84 3535.71 3436.85 3436.85 3539.31 67.31
PORSCE-II (17) - - - - - - - - - -
WSC'08 07 ComposIT 20 12 4164.99 4043.20 4083.13 4062.16 4095.46 4043.20 4089.79 46.54
PORSCE-II (15) - - - - - - - - - -
WSC'08 08 ComposIT 30 20 5849.57 5751.64 5962.46 5740.37 5710.24 5710.24 5802.86 103.39
PORSCE-II (17) - - - - - - - - - -

You can download the validation logs for each algorithm here:

  • ComposIT Exact-Matching/Semantic-Matching/WSC'08 logs (download)
  • PORSCE-II Exact-Matching/Semantic-Matching/WSC'08 logs (download)
  • OWLS-Xplan Exact-Matching logs (download)

Usage

We provide three different java binaries for each composition algorithm. In order to launch a test, you must have installed the Java JDK 6+. Latest java JDK is available here. Once installed, you can run the test platform in GUI mode or in console mode. To launch the GUI interface, simply type:

java -jar algorithm.jar

Where algorithm.jar is one of the available algorithms:

You can launch also a background test from the command line, with the following syntax:

java -jar algorithm.jar algorithm_name dataset_path http_server_port

Examples to launch tests on each repository with the dataset Exact-Matching 01, using the port 80 to create the http server to provide the services and redirecting the output to a file 01.txt:

ComposIT:

java -Xmx1024M -Xms512M -jar CompositAlgorithm.jar "ComposIT" "...\Datasets\Exact-matching\01" 80 > 01.txt

PORSCE-II:

java -Xmx1024M -Xms512M -jar PorsceAlgorithm.jar "PORSCE-II" "...\Datasets\Exact-matching\01" 80 > 01.txt

OWLS-Xplan:

java -Xmx1024M -Xms512M -jar OWLSXplanAlgorithm.jar "OWL-S Xplan 2.0" "...\Datasets\Exact-matching\01" 80 > 01.txt

Disclaimer

All the contents of this web-site are owned by the Centro de Investigación en Tecnoloxías da Información (CITIUS), University of Santiago de Compostela (USC), except the original versions of the WSC'08 datasets, OWLS-Xplan 2.0 and PORSCE-II, which are owned by their respective authors. The software available here is for private, non-commercial use and it is offered solely as a proof of concept for validation purposes.

1)
P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic Web Service Composition with a Heuristic-Based Search Algorithm,” in International Conference on Web Services (ICWS). IEEE Computer Society, 2011, pp. 81–88.
2)
P. Rodriguez-Mier, M. Mucientes, J. Vidal, and M. Lama, “An optimal and complete algorithm for automatic web service composition,” International Journal of Web Services Research (IJWSR), vol. 9, no. 2, pp. 1–20, 2012.