
1

Additional Results for Efficient ELM-based
Techniques for the Classification of Hyperspectral

Remote Sensing Images on Commodity GPUs.
Javier López-Fandiño, Pablo Quesada-Barriuso, Dora B. Heras, and Francisco Argüello

Abstract—Extreme Learning Machine (ELM) is an efficient
learning algorithm that has been recently applied to hyperspec-
tral image classification. In this paper, the first implementation
of the ELM algorithm fully developed for Graphical Processing
Unit (GPU) is presented. ELM can be expressed in terms
of matrix operations so as to take advantage of the Single
Instruction Multiple Data (SIMD) computing paradigm of the
GPU architecture. Additionally, several techniques like the use
of ensembles, a spatial regularization algorithm, and a spectral-
spatial classification scheme are applied and projected to GPU in
order to improve the accuracy results of the ELM classifier. In
the last case, the spatial processing is based on the segmentation
of the hyperspectral image through a watershed transform. The
experiments are performed on remote sensing data for land cover
applications achieving competitive accuracy results compared
to analogous SVM strategies with significantly lower execution
times. The best accuracy results are obtained with the spectral-
spatial scheme based on applying watershed and a spatially
regularized ELM.

Index Terms—Hyperspectral images, remote sensing, spectral-
spatial classification, watershed, Extreme Learning Machine,
SVM, GPU, CUDA.

I. A DDITIONAL REMOTE SENSING CLASSIFICATION

RESULTS

In this document, we present additional experimental
results obtained by the ELM classifier in GPU including
another ensemble configuration and more detailed results
for the three datasets studied. The experimental conditions
remain exactly as presented in the published paper. The
additional results are highlighted in grey in the tables.

A. ELM-based Classification Results

We compare three different GPU optimized configurations
using ELM. The last one (V-ELM-2) is an addition to the
results published in the paper:

1) A single ELM trained with 200 samples for each class
(ELM).

2) A V-ELM comprising 8 ELMs trained with 200 samples
for each class for each one of the ELMs, so that each
ELM is the same as in the first configuration (V-ELM-1).

3) A V-ELM comprising 8 ELMs trained with a total
of 200 samples for each class equally spread (with
bootstrap) among the ELMs. This way the number
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TABLE I
CLASSIFICATION ACCURACY AS PERCENTAGES(AND STANDARD

DEVIATIONS BETWEEN BRACKETS) THE ELMS CONTAINED500, 950,
AND 350 NODES IN THE HIDDEN LAYER RESPECTIVELY.

Pavia Univ. Indian Pines Salinas
OA AA kappa OA AA kappa OA AA kappa

SVM [2] 81.01 88.25 75.8678.76 69.66 75.7581.25 – –

ELM
86.75 89.55 82.6180.72 85.48 77.7091.55 95.97 90.55
(0.71) (0.26) (0.87)(0.58) (1.31) (0.64)(0.27) (0.13) (0.29)

V-ELM-1
90.32 91.81 85.7779.84 90.62 72.4090.74 96.22 89.18
(0.31) (0.20) (0.43)(0.83) (2.82) (1.08)(0.11) (0.15) (0.13)
78.17 77.16 71.42 66.80 76.63 62.23 89.21 94.49 87.91

V-ELM-2 (1.21) (1.02) (1.45) (1.28) (1.97) (1.38) (0.56) (0.24) (0.63)

of training points used by the 8 ELMs is the same
as those used by the single ELM of the previous
configuration (V-ELM-2).

The number of training samples for the ELM are 200 per
class, or half the number of samples in the class if there are
not enough samples. These samples are randomly chosen and
all the remaining samples are used for test. The number of
hidden layer neurons employed are 500 for Pavia Univ., 950
for Indian Pines, and 350 for Salinas in all the cases [1].

Table I shows accuracy results for the images in terms of
OA, AA, and kappa. The best results are highlighted in bold in
the Table. The first thing to highlight is that both configurations
obtain acceptable accuracy results, being slightly betterthan
the SVM for the three datasets.

For the Pavia Univ. image, the V-ELM-1 configuration
clearly improves on the ELM configuration in terms of ac-
curacy results while for the Indian Pines and Salinas images
both configurations obtain similar results, being the ELM
configuration only slightly better. Finally, it is worth noting
than the standard deviation values remain low in all the cases.
Regarding the V-ELM-2 configuration, as expected, it
offers in all cases a lower accuracy than a single ELM. This
is due to the fact that this configuration leaves very few
samples to train each class in each ELM and overfitting
is produced resulting in poor generalization capabilities.
This is supported by the fact that every ELM in this
configuration obtains 100% accuracy in the training phase
but much lower accuracy in the later test phase.

The performance results in terms of execution times and
speedups calculated over the OpenMP multicore implemen-
tations are detailed in Table II. It has been observed in the
experiments that the V-ELM-1 configuration provides more
stable accuracy results than a single ELM at the cost of
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TABLE II
PERFORMANCE RESULTS.

Pavia Univ. SVM ELM V-ELM-1 V-ELM-2
OpenMP CPU 20.5876s 2.3304s 18.9022s 17.2394s

CUDA GPU 2.5834s 0.3063s 2.4501s 1.9960s
Speedup 8.0× 7.6× 7.7× 8.6×

Indian Pines SVM ELM V-ELM-1 V-ELM-2
OpenMP CPU 3.0084s 1.1653s 9.6903s 4.5749s

CUDA GPU 0.7652s 0.3096s 2.6058s 0.8032s
Speedup 3.9× 3.8× 3.7× 5.7×
Salinas SVM ELM V-ELM-1 V-ELM-2

OpenMP CPU 5.6018s 1.1023s 8.7055s 7.9127s
CUDA GPU 0.8708s 0.3439s 3.0114s 2.0271s

Speedup 6.4× 3.2× 2.9× 3.9×

TABLE III
SPEEDUPS AGAINSTSVM.

Pavia Univ. Indian Pines Salinas
CPU GPU CPU GPU CPU GPU

ELM 8.8× 8.4× 2.6× 2.5× 5.1× 2.5×
V-ELM-1 1.1× 1.1× 0.3× 0.3× 0.6× 0.3×
V-ELM-2 1.2× 1.3× 0.7× 1.0× 0.7× 0.4×

slightly higher execution times.Results also indicate that the
execution times of the V-ELM-2 configuration are almost
as big as the ones of the V-ELM-1 configuration. This is
due to the fact that V-ELM-2 only saves time against V-
ELM-1 in the training phase, that is shorter than the test
phase.

The speedups of the ELM as compared to the SVM in both
the CPU and GPU architectures are shown in table III. For
the three images, the single ELM configuration is faster than
SVM, achieving, for the Pavia Univ. image, a speedup of 8.8×

in CPU and 8.4× in GPU. The V-ELM-1 configuration is more
adequate when the dataset size is large because otherwise (as
in the case of Indian Pines) there are not enough samples to
take advantage of the voting to improve accuracy results.

Summarizing, on the one hand, for the remote sensing
datasets considered the raw ELM algorithm described in this
paper is significantly faster than SVM and, on the other hand,
the V-ELM-1 algorithm always approaches or improves the
raw ELM accuracy although it requires a higher number of
training samples. This last one is a good configuration if we
want to prioritize execution times.

B. Spectral-Spatial Classification Results

In this section, the experimental results obtained by the
application of the spectral-spatial classification schemeare
shown. The impact of spatial regularization over an ELM
classification map is also studied.

Figures 1, 2 and 3 show the results of the spectral-spatial
scheme using a spatially regularized ELM (ELM+reg+wat
con(8)) for the three studied datasets.

The classification accuracy of the proposed method is
compared to results published in the literature, as the pixel-
wise spectral classification by a SVM, spatial regulariza-
tion (SVM+reg) [3], and the similar spectral-spatial schemes
based on segmentation (SVM+wat) [2] and (SVM+EM) [3].
In addition, the combination of segmentation and spatial

regularization (SVM+EM+reg) [3] is also included in the
results. SVM+wat denotes that the segmentation map of the
spectral-spatial scheme is created by watershed, and SVM+EM
the same but using expectation maximization (EM) [4] for
segmentation by partitional clustering. In all the schemes,
the spectral-spatial information is combined by the majority
vote algorithm within each segmented region. The spatial
regularization of SVM+reg and SVM+EM+reg is done using
Chamfer connectivities of eight and sixteen neighbours [3].
Results for another work based on ensembles of ELM and a
similar spectral-spatial scheme (V-ELM) are also included[5].

Table IV shows the accuracy obtained using the developed
classification scheme (best results for each dataset in bold).
Results from the literature obtained using a SVM pixel-wise
classifier are also included for comparison purposes.

As it can be observed in table IV, the ELM-based strategy
obtains better results for the three datasets. Therefore, it can
be stated that in accuracy terms ELM is suitable to replace
SVM in this spectral-spatial scheme. The connectivity of 8
neighbours, as expected, improves the results of the 4 neigh-
bours one. Table IV also shows that the spatially regularized
configurations always give better results. It is worth noting
that the spectral-spatial scheme using a spatially regularized
ELM (ELM+reg+wat con(8)) requires less computation time
that the one based in ensembles of ELM (V-ELM-1+reg+wat
con(8))) but achieves better results.
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(a) (b) (c) (d) (e)

Fig. 1. Spectral-spatial phases for the Pavia Univ. image. (a) ELM, (b) Spatial Regularization, (c) RCMG, (d) Watershed, (e) MV.

(a) (b) (c) (d) (e)

Fig. 2. Spectral-spatial phases for the Indian Pines image.(a) ELM, (b) Spatial Regularization, (c) RCMG, (d) Watershed, (e) MV.

(a) (b) (c) (d) (e)

Fig. 3. Spectral-spatial phases for the Salinas image. (a) ELM, (b) Spatial Regularization, (c) RCMG, (d) Watershed, (e) MV.
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TABLE IV
CLASSIFICATION ACCURACY AS PERCENTAGES(AND STANDARD DEVIATIONS BETWEEN BRACKETS). ‘ REG’ INDICATES THAT THE PIXEL-WISE

CLASSIFIER WAS SPATIALLY REGULARIZED. ‘ WAT ’ INDICATES SPATIAL PROCESSING BY WATERSHED. ‘ CON(X)’ INDICATES CONNECTIVITY OF ‘ X ’
NEIGHBOURS.

Pavia Univ. Indian Pines Salinas
OA AA kappa OA AA kappa OA AA kappa

SVM [2] 81.01 88.25 75.86 78.76 69.66 75.75 81.25 – –
SVM+reg [3] 84.27 90.89 79.90 88.58 77.27 86.93 – – –

SVM+wat con(8) [2] 85.42 91.31 81.30 92.48 77.26 91.39 – – –
SVM+EM [3] 93.59 94.39 91.48 87.25 70.34 85.43 – – –

SVM+EM+reg [3] 94.68 95.21 92.02 88.83 71.90 87.24 – – –
V-ELM [5] 89.18 – – 70.08 – – 93.88 – –

ELM 86.75(0.71) 89.55(0.26) 82.61(0.87)80.72(0.58) 85.48(1.31) 77.70(0.64)91.55(0.27) 95.97(0.13) 90.55(0.29)
ELM+reg 95.13(0.65) 95.51(0.40) 93.50(0.86)91.04(0.82) 92.32(1.25) 89.54(0.94)93.56(0.28) 97.02(0.15) 92.78(0.32)

ELM+wat con(4) 93.84(0.83) 94.05(0.47) 91.79(1.08)88.73(0.67) 90.76(1.55) 86.90(0.76)92.91(0.25) 96.15(0.18) 92.06(0.27)
ELM+wat con(8) 95.09(0.71) 95.14(0.47) 93.44(0.93)91.41(0.97) 93.91(1.32) 89.98(1.12)93.31(0.33) 96.52(0.17) 92.51(0.37)

ELM+reg+wat con(4) 95.37(0.67) 95.00(0.47) 93.81(0.88)90.90(0.96) 91.47(1.63) 89.38(1.10)93.46(0.31) 96.48(0.18) 92.67(0.35)
ELM+reg+wat con(8) 95.65(0.77) 95.52(0.52) 94.18(1.02)92.67(1.08) 94.29(1.22) 91.43(1.24) 93.70(0.35) 96.78(0.16) 92.95(0.39)

V-ELM-1+reg+wat con(8) 96.66(0.28) 95.92(0.29) 95.00(0.42)90.41(1.06) 95.35(1.83) 86.21(1.43) 92.43(0.31) 96.75(0.16) 91.15(0.36)
V-ELM-2+reg+wat con(8) 93.98(1.09) 92.68(1.06) 91.91(1.43) 85.71(1.66) 91.66(2.07) 83.63(1.86) 92.90(0.49) 96.31(0.26) 92.04(0.55)


